Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; : 107161, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561094

RESUMO

Hypermutable Pseudomonas aeruginosa strains are highly prevalent in chronic lung infections of patients with cystic fibrosis (CF). Acute exacerbations of these infections have limited treatment options. This study aimed to investigate inhaled aztreonam and tobramycin against clinical hypermutable P. aeruginosa strains using the CDC dynamic in vitro biofilm reactor (CBR), mechanism-based mathematical modeling (MBM) and genomic studies. Two CF multidrug-resistant strains were investigated in a 168h CBR (n=2 biological replicates). Regimens were inhaled aztreonam (75 mg 8-hourly) and tobramycin (300 mg 12-hourly) in monotherapies and combination. The simulated pharmacokinetic profiles of aztreonam and tobramycin (t1/2=3h) were based on published lung fluid concentrations in patients with CF. Total viable and resistant counts were determined for planktonic and biofilm bacteria. MBM of total and resistant bacterial counts, and whole genome sequencing were completed. Both isolates showed reproducible bacterial regrowth and resistance amplification for the monotherapies by 168h. The combination performed synergistically, with minimal resistant subpopulations compared to the respective monotherapies at 168h. Mechanistic synergy appropriately described the antibacterial effects of the combination regimen in the MBM. Genomic analysis of colonies recovered from monotherapy regimens indicated noncanonical resistance mechanisms were likely responsible for treatment failure. The combination of aztreonam and tobramycin was required to suppress regrowth and resistance of planktonic and biofilm bacteria in all biological replicates of both hypermutable multidrug-resistant P. aeruginosa CF isolates. The developed MBM could be utilized for future investigations of this promising inhaled combination.

2.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611475

RESUMO

Seed storability has a significant impact on seed vitality and is a crucial genetic factor in maintaining seed value during storage. In this study, RNA sequencing was used to analyze the seed transcriptomes of two rice thermo-sensitive genic male sterile (TGMS) lines, S1146S (storage-tolerant) and SD26S (storage-susceptible), with 0 and 7 days of artificial accelerated aging treatment. In total, 2658 and 1523 differentially expressed genes (DEGs) were identified in S1146S and SD26S, respectively. Among these DEGs, 729 (G1) exhibited similar regulation patterns in both lines, while 1924 DEGs (G2) were specific to S1146S, 789 DEGs (G3) were specific to SD26S, and 5 DEGs (G4) were specific to contrary differential expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that "translation", "ribosome", "oxidative phosphorylation", "ATP-dependent activity", "intracellular protein transport", and "regulation of DNA-templated transcription" were significantly enriched during seed aging. Several genes, like Os01g0971400, Os01g0937200, Os03g0276500, Os05g0328632, and Os07g0214300, associated with seed storability were identified in G4. Core genes Os03g0100100 (OsPMEI12), Os03g0320900 (V2), Os02g0494000, Os02g0152800, and Os03g0710500 (OsBiP2) were identified in protein-protein interaction (PPI) networks. Seed vitality genes, MKKK62 (Os01g0699600), OsFbx352 (Os10g0127900), FSE6 (Os05g0540000), and RAmy3E (Os08g0473600), related to seed storability were identified. Overall, these results provide novel perspectives for studying the molecular response and related genes of different-storability rice TGMS lines under artificial aging conditions. They also provide new ideas for studying the storability of hybrid rice.

3.
Langmuir ; 40(12): 6198-6211, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38468362

RESUMO

Titanium silicon molecular sieve (TS-1) is an oxidation catalyst that possesses a long lifetime of charge transfer excited state, high Ti utilization efficiency, large specific surface area, and good adsorption property; therefore, TS-1 acts as a Ti-based photocatalyst candidate. In this work, TS-1 coupled Bi2MoO6 (TS-1/BMO) photocatalysts were fabricated via a facile hydrothermal route. Interestingly, the optimized TS-1/BMO-1.0 catalyst exhibited a decent photodegradation property toward tetracycline hydrochloride (85.49% in 120 min) under the irradiation of full spectrum light, which were 4.38 and 1.76 times compared to TS-1 and BMO, respectively. The enhanced photodegradation property of the TS-1/BMO-1.0 catalyst could be attributed to the reinforced light-harvesting capacity of the photocatalyst, high charge mobility, and suitable band structure for tetracycline hydrochloride degradation. In addition, the mechanism of photocatalytic degradation of tetracycline hydrochloride by the TS-1/BMO-1.0 catalyst was reasonably proposed based on the band structure, trapping, and ESR tests. This research provided feasible ideas for the design and construction of high-efficiency photocatalysts for contaminant degradation.

4.
Antimicrob Agents Chemother ; 68(3): e0139923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329330

RESUMO

Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Doripenem , Ágar , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Penicilinas , Ácido Clavulânico/farmacologia , Imipenem/farmacologia , Água , Testes de Sensibilidade Microbiana
5.
Antimicrob Agents Chemother ; 68(2): e0139323, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169309

RESUMO

Aminoglycosides are important treatment options for serious lung infections, but modeling analyses to quantify their human lung epithelial lining fluid (ELF) penetration are lacking. We estimated the extent and rate of penetration for five aminoglycosides via population pharmacokinetics from eight published studies. The area under the curve in ELF vs plasma ranged from 50% to 100% and equilibration half-lives from 0.61 to 5.80 h, indicating extensive system hysteresis. Aminoglycoside ELF peak concentrations were blunted, but overall exposures were moderately high.


Assuntos
Aminoglicosídeos , Antibacterianos , Humanos , Antibacterianos/farmacocinética , Pulmão , Amicacina
6.
Antimicrob Agents Chemother ; 67(8): e0041423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428034

RESUMO

Pseudomonas aeruginosa remains a challenge in chronic respiratory infections in cystic fibrosis (CF). Ceftolozane-tazobactam has not yet been evaluated against multidrug-resistant hypermutable P. aeruginosa isolates in the hollow-fiber infection model (HFIM). Isolates CW41, CW35, and CW44 (ceftolozane-tazobactam MICs of 4, 4, and 2 mg/L, respectively) from adults with CF were exposed to simulated representative epithelial lining fluid pharmacokinetics of ceftolozane-tazobactam in the HFIM. Regimens were continuous infusion (CI; 4.5 g/day to 9 g/day, all isolates) and 1-h infusions (1.5 g every 8 hours and 3 g every 8 hours, CW41). Whole-genome sequencing and mechanism-based modeling were performed for CW41. CW41 (in four of five biological replicates) and CW44 harbored preexisting resistant subpopulations; CW35 did not. For replicates 1 to 4 of CW41 and CW44, 9 g/day CI decreased bacterial counts to <3 log10 CFU/mL for 24 to 48 h, followed by regrowth and resistance amplification. Replicate 5 of CW41 had no preexisting subpopulations and was suppressed below ~3 log10 CFU/mL for 120 h by 9 g/day CI, followed by resistant regrowth. Both CI regimens reduced CW35 bacterial counts to <1 log10 CFU/mL by 120 h without regrowth. These results corresponded with the presence or absence of preexisting resistant subpopulations and resistance-associated mutations at baseline. Mutations in ampC, algO, and mexY were identified following CW41 exposure to ceftolozane-tazobactam at 167 to 215 h. Mechanism-based modeling well described total and resistant bacterial counts. The findings highlight the impact of heteroresistance and baseline mutations on the effect of ceftolozane-tazobactam and limitations of MIC to predict bacterial outcomes. The resistance amplification in two of three isolates supports current guidelines that ceftolozane-tazobactam should be utilized together with another antibiotic against P. aeruginosa in CF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Adulto , Humanos , Pseudomonas aeruginosa , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Cefalosporinas/farmacocinética , Tazobactam/farmacologia , Antibacterianos/farmacocinética , Mitomicina/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
7.
Plant Biotechnol J ; 21(9): 1873-1886, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323119

RESUMO

Salicylic acid (SA) is an essential plant hormone that plays critical roles in basal defence and amplification of local immune responses and establishes resistance against various pathogens. However, the comprehensive knowledge of the salicylic acid 5-hydroxylase (S5H) in rice-pathogen interaction is still elusive. Here, we reported that three OsS5H homologues displayed salicylic acid 5-hydroxylase activity, converting SA into 2,5-dihydroxybenzoic acid (2,5-DHBA). OsS5H1, OsS5H2, and OsS5H3 were preferentially expressed in rice leaves at heading stage and responded quickly to exogenous SA treatment. We found that bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) strongly induced the expression of OsS5H1, OsS5H2, and OsS5H3. Rice plants overexpressing OsS5H1, OsS5H2, and OsS5H3 showed significantly decreased SA contents and increased 2,5-DHBA levels, and were more susceptible to bacterial blight and rice blast. A simple single guide RNA (sgRNA) was designed to create oss5h1oss5h2oss5h3 triple mutants through CRISPR/Cas9-mediated gene mutagenesis. The oss5h1oss5h2oss5h3 exhibited stronger resistance to Xoo than single oss5h mutants. And oss5h1oss5h2oss5h3 plants displayed enhanced rice blast resistance. The conferred pathogen resistance in oss5h1oss5h2oss5h3 was attributed to the significantly upregulation of OsWRKY45 and pathogenesis-related (PR) genes. Besides, flg22-induced reactive oxygen species (ROS) burst was enhanced in oss5h1oss5h2oss5h3. Collectively, our study provides a fast and effective approach to generate rice varieties with broad-spectrum disease resistance through OsS5H gene editing.


Assuntos
Oryza , Xanthomonas , Resistência à Doença/genética , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Mutação/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
8.
Int J Antimicrob Agents ; 62(3): 106887, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315906

RESUMO

OBJECTIVE: Acute exacerbations of biofilm-associated Pseudomonas aeruginosa infections in cystic fibrosis (CF) have limited treatment options. Ceftolozane/tazobactam (alone and with a second antibiotic) has not yet been investigated against hypermutable clinical P. aeruginosa isolates in biofilm growth. This study aimed to evaluate, using an in vitro dynamic biofilm model, ceftolozane/tazobactam alone and in combination with tobramycin at simulated representative lung fluid pharmacokinetics against free-floating (planktonic) and biofilm states of two hypermutable P. aeruginosa epidemic strains (LES-1 and CC274) from adolescents with CF. METHODS: Regimens were intravenous ceftolozane/tazobactam 4.5 g/day continuous infusion, inhaled tobramycin 300 mg 12-hourly, intravenous tobramycin 10 mg/kg 24-hourly, and both ceftolozane/tazobactam-tobramycin combinations. The isolates were susceptible to both antibiotics. Total and less-susceptible free-floating and biofilm bacteria were quantified over 120-168 h. Ceftolozane/tazobactam resistance mechanisms were investigated by whole-genome sequencing. Mechanism-based modelling of bacterial viable counts was performed. RESULTS: Monotherapies of ceftolozane/tazobactam and tobramycin did not sufficiently suppress emergence of less-susceptible subpopulations, although inhaled tobramycin was more effective than intravenous tobramycin. Ceftolozane/tazobactam resistance development was associated with classical (AmpC overexpression plus structural modification) and novel (CpxR mutations) mechanisms depending on the strain. Against both isolates, combination regimens demonstrated synergy and completely suppressed the emergence of ceftolozane/tazobactam and tobramycin less-susceptible free-floating and biofilm bacterial subpopulations. CONCLUSION: Mechanism-based modelling incorporating subpopulation and mechanistic synergy well described the antibacterial effects of all regimens against free-floating and biofilm bacterial states. These findings support further investigation of ceftolozane/tazobactam in combination with tobramycin against biofilm-associated P. aeruginosa infections in adolescents with CF.


Assuntos
Infecções por Pseudomonas , Tobramicina , Humanos , Adolescente , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Pseudomonas aeruginosa , Cefalosporinas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tazobactam/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
9.
mBio ; 13(6): e0291622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374076

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has radically altered daily life. Effective antiviral therapies to combat COVID-19, especially severe disease, remain scarce. Molnupiravir is an antiviral that has shown clinical efficacy against mild-to-moderate COVID-19 but failed to provide benefit to hospitalized patients with severe disease. Here, we explained the mechanism behind the failure of molnupiravir in hospitalized patients and identified alternative dosing strategies that would improve therapeutic outcomes in all patients with COVID-19. We showed that delaying therapy initiation markedly decreased the antiviral effect of molnupiravir, and these results were directly related to intracellular drug triphosphate pools and intracellular viral burden at the start of therapy. The adverse influence of therapeutic delay could be overcome by increasing drug exposure, which increased intracellular molnupiravir triphosphate concentrations that inhibited viral replication. These findings illustrated that molnupiravir must be administered as early as possible following COVID-19 symptom onset to maximize therapeutic efficacy. Higher doses may be effective in patients hospitalized with severe disease, but the safety of high-dose molnupiravir regimens is unknown. Our findings could be extended to design effective regimens with nucleoside analogs for other RNA viruses, especially those with pandemic potential. IMPORTANCE In this study, we showed that early intervention with molnupiravir resulted in a greater antiviral effect, and we explained the mechanism behind this phenomenon. Our results predicted and explained the failure of molnupiravir in hospitalized patients and highlighted the utility of preclinical pharmacodynamic studies to design optimal antiviral regimens for the treatment of viral diseases. This contrasts with the procedure that was implemented early in the pandemic in which clinical studies were conducted in the absence of preclinical experimentation. These findings are significant and demonstrated the importance of experimental approaches in antiviral development for treatments against COVID-19 as well as other viral diseases.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais
10.
Antimicrob Agents Chemother ; 66(9): e0052722, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35924913

RESUMO

Metallo-ß-lactamase (MBL)-producing Gram-negative bacteria cause infections associated with high rates of morbidity and mortality. Currently, a leading regimen to treat infections caused by MBL-producing bacteria is aztreonam combined with ceftazidime-avibactam. The purpose of the present study was to evaluate and rationally optimize the combination of aztreonam and ceftazidime-avibactam with and without polymyxin B against a clinical Klebsiella pneumoniae isolate producing NDM-1 and CTX-M by use of the hollow fiber infection model (HFIM). A novel de-escalation approach to polymyxin B dosing was also explored, whereby a standard 0-h loading dose was followed by maintenance doses that were 50% of the typical clinical regimen. In the HFIM, the addition of polymyxin B to aztreonam plus ceftazidime-avibactam significantly improved bacterial killing, leading to eradication, including for the novel de-escalation dosing strategy. Serial samples from the growth control and monotherapies were explored in a Galleria mellonella virulence model to assess virulence changes. Weibull regression showed that low-level ceftazidime resistance and treatment with monotherapy resulted in increased G. mellonella mortality (P < 0.05). A neutropenic rabbit pneumonia model demonstrated that aztreonam plus ceftazidime-avibactam with or without polymyxin B resulted in similar bacterial killing, and these combination therapies were statistically significantly better than monotherapies (P < 0.05). However, only the polymyxin B-containing combination therapy produced a statistically significant decrease in lung weights (P < 0.05), indicating a decreased inflammatory process. Altogether, adding polymyxin B to the combination of aztreonam plus ceftazidime-avibactam for NDM- and CTX-M-producing K. pneumoniae improved bacterial killing effects, reduced lung inflammation, suppressed resistance amplification, and limited virulence changes.


Assuntos
Ceftazidima , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Aztreonam/farmacologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Parede Celular/metabolismo , Combinação de Medicamentos , Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Coelhos , beta-Lactamases/metabolismo
11.
Genes (Basel) ; 13(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35741784

RESUMO

Frequent high temperature weather affects the growth and development of rice, resulting in the decline of seed-setting rate, deterioration of rice quality and reduction of yield. Although some high temperature tolerance genes have been cloned, there is still little success in solving the effects of high temperature stress in rice (Oryza sativa L.). Based on the transcriptional data of seven time points, the weighted correlation network analysis (WGCNA) method was used to construct a co-expression network of differentially expressed genes (DEGs) between the rice genotypes IR64 (tolerant to heat stress) and Koshihikari (susceptible to heat stress). There were four modules in both genotypes that were highly correlated with the time points after heat stress in the seedling. We further identified candidate hub genes through clustering and analysis of protein interaction network with known-core genes. The results showed that the ribosome and protein processing in the endoplasmic reticulum were the common pathways in response to heat stress between the two genotypes. The changes of starch and sucrose metabolism and the biosynthesis of secondary metabolites pathways are possible reasons for the sensitivity to heat stress for Koshihikari. Our findings provide an important reference for the understanding of high temperature response mechanisms and the cultivation of high temperature resistant materials.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo
12.
J Pharm Anal ; 12(1): 145-155, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35573885

RESUMO

The National Medical Products Administration has authorized sodium oligomannate for treating mild-to-moderate Alzheimer's disease. In this study, an LC-MS/MS method was developed and validated to quantitate sodium oligomannate in different biomatrices. The plasma pharmacokinetics, tissue distribution, and excretion of sodium oligomannate in Sprague-Dawley rats and beagle dogs were systematically investigated. Despite its complicated structural composition, the absorption, distribution, metabolism, and excretion profiles of the oligosaccharides in sodium oligomannate of different sizes and terminal derivatives were indiscriminate. Sodium oligomannate mainly crossed the gastrointestinal epithelium through paracellular transport following oral administration, with very low oral bioavailability in rats (0.6%-1.6%) and dogs (4.5%-9.3%). Absorbed sodium oligomannate mainly resided in circulating body fluids in free form with minimal distribution into erythrocytes and major tissues. Sodium oligomannate could penetrate the blood-cerebrospinal fluid (CSF) barrier of rats, showing a constant area under the concentration-time curve ratio (CSF/plasma) of approximately 5%. The cumulative urinary excretion of sodium oligomannate was commensurate with its oral bioavailability, supporting that excretion was predominantly renal, whereas no obvious biliary secretion was observed following a single oral dose to bile duct-cannulated rats. Moreover, only 33.7% (male) and 26.3% (female) of the oral dose were recovered in the rat excreta within 96 h following a single oral administration, suggesting that the intestinal flora may have ingested a portion of unabsorbed sodium oligomannate as a nutrient.

13.
Antibiotics (Basel) ; 11(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35052977

RESUMO

We evaluated piperacillin-tazobactam and tobramycin regimens against Pseudomonas aeruginosa isolates from critically ill patients. Static-concentration time-kill studies (SCTK) assessed piperacillin-tazobactam and tobramycin monotherapies and combinations against four isolates over 72 h. A 120 h-dynamic in vitro infection model (IVM) investigated isolates Pa1281 (MICpiperacillin 4 mg/L, MICtobramycin 0.5 mg/L) and CR380 (MICpiperacillin 32 mg/L, MICtobramycin 1 mg/L), simulating the pharmacokinetics of: (A) tobramycin 7 mg/kg q24 h (0.5 h-infusions, t1/2 = 3.1 h); (B) piperacillin 4 g q4 h (0.5 h-infusions, t1/2 = 1.5 h); (C) piperacillin 24 g/day, continuous infusion; A + B; A + C. Total and less-susceptible bacteria were determined. SCTK demonstrated synergy of the combination for all isolates. In the IVM, regimens A and B provided initial killing, followed by extensive regrowth by 72 h for both isolates. C provided >4 log10 CFU/mL killing, followed by regrowth close to initial inoculum by 96 h for Pa1281, and suppressed growth to <4 log10 CFU/mL for CR380. A and A + B initially suppressed counts of both isolates to <1 log10 CFU/mL, before regrowth to control or starting inoculum and resistance emergence by 72 h. Overall, the combination including intermittent piperacillin-tazobactam did not provide a benefit over tobramycin monotherapy. A + C, the combination regimen with continuous infusion of piperacillin-tazobactam, provided synergistic killing (counts <1 log10 CFU/mL) of Pa1281 and CR380, and suppressed regrowth to <2 and <4 log10 CFU/mL, respectively, and resistance emergence over 120 h. The shape of the concentration-time curve was important for synergy of the combination.

14.
Antimicrob Agents Chemother ; 66(3): e0220321, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041509

RESUMO

Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ, 0.5 mg/liter; MICTOB, 2 mg/liter) and CW8 (MICCAZ, 2 mg/liter; MICTOB, 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log10 CFU/ml) and biofilm (>3.8 log10 CFU/cm2) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Tobramicina/uso terapêutico
15.
J Hazard Mater ; 424(Pt D): 127703, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34799159

RESUMO

Rice (Oryza sativa L.), a staple for half of the world's population, usually accumulates high levels of cadmium (Cd) in the grain when planted in the Cd-contaminated paddy fields. Genetic improvements using natural variation of grain-Cd accumulation is the most cost-effective way to mitigate the risk of excess Cd accumulation. However, as a complex trait, grain-Cd accumulation is susceptible to environmental variation, which challenges to characterize the genetic nature and subsequently the stable performance of grain-Cd accumulation. To boost the genetic effect on grain-Cd performance, we established an approach of normalization using the comparative grain-Cd value (CCd) following a contrasting field design. Identification of the genetic locus responsible for CCd variation help us develop a low-grain-Cd variety de novo, named 'Lushansimiao', which had lower grain-Cd levels in a large-scale field test and can produce Cd-safe rice following prolonged irrigations in the field with intermediate levels of Cd pollution. Combined CCd evaluating and low-Cd allelic genotyping, another six varieties were also identified as low-grain-Cd rice. Our study paves the way to efficiently quantify the genetic nature of grain-Cd accumulation in rice, and the stable low-Cd rice varieties will help to mitigate the risk of excess Cd accumulation in rice.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Grão Comestível/química , Genótipo , Oryza/genética , Solo , Poluentes do Solo/análise
16.
Antimicrob Agents Chemother ; 65(9): e0069221, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152820

RESUMO

Antibiotic combinations, including ceftazidime/avibactam (CAZ/AVI), are frequently employed to combat KPC-producing Klebsiella pneumoniae (KPC-Kp), though such combinations have not been rationally optimized. Clinical KPC-Kp isolates with common genes encoding aminoglycoside-modifying enzymes (AMEs), aac(6')-Ib' or aac(6')-Ib, were used in static time-kill assays (n = 4 isolates) and the hollow-fiber infection model (HFIM; n = 2 isolates) to evaluate the activity of gentamicin, amikacin, and CAZ/AVI alone and in combinations. A short course, one-time aminoglycoside dose was also evaluated. Gentamicin plus CAZ/AVI was then tested in a mouse pneumonia model. Synergy with CAZ/AVI was more common with amikacin for aac(6')-Ib'-containing KPC-Kp but more common with gentamicin for aac(6')-Ib-containing isolates in time-kill assays. In the HFIM, although the isolates were aminoglycoside-susceptible at baseline, aminoglycoside monotherapies displayed variable initial killing, followed by regrowth and resistance emergence. CAZ/AVI combined with amikacin or gentamicin resulted in undetectable counts 50 h sooner than CAZ/AVI monotherapy against KPC-Kp with aac(6')-Ib'. CAZ/AVI monotherapy failed to eradicate KPC-Kp with aac(6')-Ib and a combination with gentamicin led to undetectable counts 70 h sooner than with amikacin. A one-time aminoglycoside dose with CAZ/AVI provided similar killing to aminoglycosides dosed for 7 days. In the mouse pneumonia model (n = 1 isolate), gentamicin and CAZ/AVI achieved a 6.0-log10 CFU/lung reduction at 24 h, which was significantly greater than either monotherapy (P < 0.005). Aminoglycosides in combination with CAZ/AVI were promising for KPC-Kp infections; this was true even for a one-time aminoglycoside dose. Selecting aminoglycosides based on AME genes or susceptibilities can improve the pharmacodynamic activity of the combination.


Assuntos
Ceftazidima , Infecções por Klebsiella , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Genótipo , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Camundongos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
17.
Clin Pharmacol Ther ; 109(4): 1000-1020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33576025

RESUMO

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of ß-lactam antibiotics and ß-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While ß-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.


Assuntos
Técnicas Bacteriológicas/métodos , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla/fisiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Animais , Membrana Celular/fisiologia , Modelos Animais de Doenças , Humanos , Modelos Teóricos , Proteínas de Ligação às Penicilinas/fisiologia , beta-Lactamas/farmacologia
18.
Microorganisms ; 9(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540830

RESUMO

Chikungunya virus (CHIKV) is an alphavirus associated with a broad tissue tropism for which no antivirals or vaccines are approved. This study evaluated the antiviral potential of favipiravir (FAV), interferon-alpha (IFN), and ribavirin (RBV) against CHIKV as mono- and combination-therapy in cell lines that are clinically relevant to human infection. Cells derived from human connective tissue (HT-1080), neurons (SK-N-MC), and skin (HFF-1) were infected with CHIKV and treated with different concentrations of FAV, IFN, or RBV. Viral supernatant was sampled daily and the burden was quantified by plaque assay on Vero cells. FAV and IFN were the most effective against CHIKV on various cell lines, suppressing the viral burden at clinically achievable concentrations; although the degree of antiviral activity was heavily influenced by cell type. RBV was not effective and demonstrated substantial toxicity, indicating that it is not a feasible candidate for CHIKV. The combination of FAV and IFN was then assessed on all cell lines. Combination therapy enhanced antiviral activity in HT-1080 and SK-N-MC cells, but not in HFF-1 cells. We developed a pharmacokinetic/pharmacodynamic model that described the viral burden and inhibitory antiviral effect. Simulations from this model predicted clinically relevant concentrations of FAV plus IFN completely suppressed CHIKV replication in HT-1080 cells, and considerably slowed down the rate of viral replication in SK-N-MC cells. The model predicted substantial inhibition of viral replication by clinical IFN regimens in HFF-1 cells. Our results highlight the antiviral potential of FAV and IFN combination regimens against CHIKV in clinically relevant cell types.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33106266

RESUMO

Mycobacterium abscessus causes serious infections that often require over 18 months of antibiotic combination therapy. There is no standard regimen for the treatment of M. abscessus infections, and the multitude of combinations that have been used clinically have had low success rates and high rates of toxicities. With ß-lactam antibiotics being safe, double ß-lactam and ß-lactam/ß-lactamase inhibitor combinations are of interest for improving the treatment of M. abscessus infections and minimizing toxicity. However, a mechanistic approach for building these combinations is lacking since little is known about which penicillin-binding protein (PBP) target receptors are inactivated by different ß-lactams in M. abscessus We determined the preferred PBP targets of 13 ß-lactams and 2 ß-lactamase inhibitors in two M. abscessus strains and identified PBP sequences by proteomics. The Bocillin FL binding assay was used to determine the ß-lactam concentrations that half-maximally inhibited Bocillin binding (50% inhibitory concentrations [IC50s]). Principal component analysis identified four clusters of PBP occupancy patterns. Carbapenems inactivated all PBPs at low concentrations (0.016 to 0.5 mg/liter) (cluster 1). Cephalosporins (cluster 2) inactivated PonA2, PonA1, and PbpA at low (0.031 to 1 mg/liter) (ceftriaxone and cefotaxime) or intermediate (0.35 to 16 mg/liter) (ceftazidime and cefoxitin) concentrations. Sulbactam, aztreonam, carumonam, mecillinam, and avibactam (cluster 3) inactivated the same PBPs as cephalosporins but required higher concentrations. Other penicillins (cluster 4) specifically targeted PbpA at 2 to 16 mg/liter. Carbapenems, ceftriaxone, and cefotaxime were the most promising ß-lactams since they inactivated most or all PBPs at clinically relevant concentrations. These first PBP occupancy patterns in M. abscessus provide a mechanistic foundation for selecting and optimizing safe and effective combination therapies with ß-lactams.


Assuntos
Mycobacterium abscessus , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Penicilinas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia
20.
J Antimicrob Chemother ; 75(9): 2622-2632, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464664

RESUMO

BACKGROUND: MBL-producing strains of Enterobacteriaceae are a major public health concern. We sought to define optimal combination regimens of ceftazidime/avibactam with aztreonam in a hollow-fibre infection model (HFIM) of MBL-producing strains of Escherichia coli and Klebsiella pneumoniae. METHODS: E. coli ARLG-1013 (blaNDM-1, blaCTX-M, blaCMY, blaTEM) and K. pneumoniae ARLG-1002 (blaNDM-1, blaCTXM-15, blaDHA, blaSHV, blaTEM) were studied in the HFIM using simulated human dosing regimens of ceftazidime/avibactam and aztreonam. Experiments were designed to evaluate the effect of staggered versus simultaneous administration, infusion duration and aztreonam daily dose (6 g/day versus 8 g/day) on bacterial killing and resistance suppression. Prospective validation experiments for the most active combination regimens were performed in triplicate to ensure reproducibility. RESULTS: Staggered administration of the combination (ceftazidime/avibactam followed by aztreonam) was found to be inferior to simultaneous administration. Longer infusion durations (2 h and continuous infusion) also resulted in enhanced bacterial killing relative to 30 min infusions. The rate of killing was more pronounced with 8 g/day versus 6 g/day aztreonam combination regimens for both tested strains. In the prospective validation experiments, ceftazidime/avibactam with aztreonam dosed every 8 and 6 h, respectively (ceftazidime/avibactam 2/0.5 g every 8 h + aztreonam 2 g every 6 h), or ceftazidime/avibactam with aztreonam as continuous infusions resulted in maximal bacterial killing and resistance suppression over 7 days. CONCLUSIONS: Simultaneous administration of aztreonam 8 g/day given as a continuous or 2 h infusion with ceftazidime/avibactam resulted in complete bacterial eradication and resistance suppression. Further study of this combination is needed with additional MBL-producing Gram-negative pathogens. The safety of this double ß-lactam strategy also warrants further study in Phase 1 clinical trials.


Assuntos
Aztreonam , Ceftazidima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Combinação de Medicamentos , Enterobacteriaceae , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Reprodutibilidade dos Testes , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...